Deep learning and Natural Language Processing
Deep learning and Natural Language Processing
August 20, 2018

Deep learning and Natural Language Processing

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails, customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks.

These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering. In this spring quarter course students will learn to implement, train, debug, visualize and invent their own neural network models. The course provides a deep excursion into cutting-edge research in deep learning applied to NLP. The final project will involve training a complex recurrent neural network and applying it to a large scale NLP problem. On the model side we will cover word vector representations, window-based neural networks, recurrent neural networks, long-short-term-memory models, recursive neural networks, convolutional neural networks as well as some very novel models involving a memory component.

Through lectures and programming assignments students will learn the necessary engineering tricks for making neural networks work on practical problems.

Prerequisites:

  • Proficiency in Python
    All class assignments will be in Python (and use numpy). If you have a lot of programming experience but in a different language (e.g. C/C++/Matlab/Javascript) you will probably be fine.
  • College Calculus, Linear Algebra
    You should be comfortable taking derivatives and understanding matrix vector operations and notation.
  • Basic Probability and Statistics 
    You should know basics of probabilities, gaussian distributions, mean, standard deviation, etc.
  • Equivalent knowledge of Machine Learning
    We will be formulating cost functions, taking derivatives and performing optimization with gradient descent.

Is this the first time this class is offered?

This is the second offering of this course. The class is designed to introduce students to deep learning for natural language processing. We will place a particular emphasis on Neural Networks, which are a class of deep learning models that have recently obtained improvements in many different NLP tasks.

Tags :
Apply for this course
Apply Now